Contents in Brief

Contents xiii
Preface xli
Acknowledgments xliii
Contributors xlv

Part I
Overall Perspective

1 The Brain and Behavior 5
2 Nerve Cells, Neural Circuitry, and Behavior 21
3 Genes and Behavior 39

Part II
Cell and Molecular Biology of the Neuron

4 The Cells of the Nervous System 71
5 Ion Channels 100
6 Membrane Potential and the Passive Electrical Properties of the Neuron 126
7 Propagated Signaling: The Action Potential 148

Part III
Synaptic Transmission

8 Overview of Synaptic Transmission 177
9 Signaling at the Nerve-Muscle Synapse: Directly Gated Transmission 189
10 Synaptic Integration in the Central Nervous System 210
11 Modulation of Synaptic Transmission: Second Messengers 236
12 Transmitter Release 260
13 Neurotransmitters 289
14 Diseases of the Nerve and Motor Unit 307

Part IV
The Neural Basis of Cognition

15 The Organization of the Central Nervous System 337
16 The Functional Organization of Perception and Movement 356
17 From Nerve Cells to Cognition: The Internal Representations of Space and Action 370
18 The Organization of Cognition 392
19 Cognitive Functions of the Premotor Systems 412
20 Functional Imaging of Cognition 426

Part V
Perception

21 Sensory Coding 449
22 The Somatosensory System: Receptors and Central Pathways 475
23 Touch 498
24 Pain 530
25 The Constructive Nature of Visual Processing 556
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Low-Level Visual Processing: The Retina</td>
<td>577</td>
</tr>
<tr>
<td>27</td>
<td>Intermediate-Level Visual Processing and Visual Primitives</td>
<td>602</td>
</tr>
<tr>
<td>28</td>
<td>High-Level Visual Processing: Cognitive Influences</td>
<td>621</td>
</tr>
<tr>
<td>29</td>
<td>Visual Processing and Action</td>
<td>638</td>
</tr>
<tr>
<td>30</td>
<td>The Inner Ear</td>
<td>654</td>
</tr>
<tr>
<td>31</td>
<td>The Auditory Central Nervous System</td>
<td>682</td>
</tr>
<tr>
<td>32</td>
<td>Smell and Taste: The Chemical Senses</td>
<td>712</td>
</tr>
<tr>
<td></td>
<td>Part VI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Movement</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>The Organization and Planning of Movement</td>
<td>743</td>
</tr>
<tr>
<td>34</td>
<td>The Motor Unit and Muscle Action</td>
<td>768</td>
</tr>
<tr>
<td>35</td>
<td>Spinal Reflexes</td>
<td>790</td>
</tr>
<tr>
<td>36</td>
<td>Locomotion</td>
<td>812</td>
</tr>
<tr>
<td>37</td>
<td>Voluntary Movement: The Primary Motor Cortex</td>
<td>855</td>
</tr>
<tr>
<td>38</td>
<td>Voluntary Movement: The Parietal and Premotor Cortex</td>
<td>865</td>
</tr>
<tr>
<td>39</td>
<td>The Control of Gaze</td>
<td>894</td>
</tr>
<tr>
<td>40</td>
<td>The Vestibular System</td>
<td>917</td>
</tr>
<tr>
<td>41</td>
<td>Posture</td>
<td>935</td>
</tr>
<tr>
<td>42</td>
<td>The Cerebellum</td>
<td>960</td>
</tr>
<tr>
<td>43</td>
<td>The Basal Ganglia</td>
<td>982</td>
</tr>
<tr>
<td>44</td>
<td>Genetic Mechanisms in Degenerative Diseases of the Nervous System</td>
<td>999</td>
</tr>
<tr>
<td></td>
<td>Part VII</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Unconscious and Conscious Processing of Neural Information</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>The Sensory, Motor, and Reflex Functions of the Brain Stem</td>
<td>1019</td>
</tr>
<tr>
<td>46</td>
<td>The Modulatory Functions of the Brain Stem</td>
<td>1038</td>
</tr>
<tr>
<td>47</td>
<td>The Autonomic Motor System and the Hypothalamus</td>
<td>1056</td>
</tr>
<tr>
<td>48</td>
<td>Emotions and Feelings</td>
<td>1079</td>
</tr>
<tr>
<td>49</td>
<td>Homeostasis, Motivation, and Addictive States</td>
<td>1095</td>
</tr>
<tr>
<td>50</td>
<td>Seizures and Epilepsy</td>
<td>1116</td>
</tr>
<tr>
<td>51</td>
<td>Sleep and Dreaming</td>
<td>1140</td>
</tr>
<tr>
<td></td>
<td>Part VIII</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Development and the Emergence of Behavior</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Patterning the Nervous System</td>
<td>1165</td>
</tr>
<tr>
<td>53</td>
<td>Differentiation and Survival of Nerve Cells</td>
<td>1187</td>
</tr>
<tr>
<td>54</td>
<td>The Growth and Guidance of Axons</td>
<td>1209</td>
</tr>
<tr>
<td>55</td>
<td>Formation and Elimination of Synapses</td>
<td>1233</td>
</tr>
<tr>
<td>56</td>
<td>Experience and the Refinement of Synaptic Connections</td>
<td>1259</td>
</tr>
<tr>
<td>57</td>
<td>Repairing the Damaged Brain</td>
<td>1284</td>
</tr>
<tr>
<td>58</td>
<td>Sexual Differentiation of the Nervous System</td>
<td>1306</td>
</tr>
<tr>
<td>59</td>
<td>The Aging Brain</td>
<td>1328</td>
</tr>
<tr>
<td></td>
<td>Part IX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Language, Thought, Affect, and Learning</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Language</td>
<td>1353</td>
</tr>
<tr>
<td>61</td>
<td>Disorders of Conscious and Unconscious Mental Processes</td>
<td>1373</td>
</tr>
<tr>
<td>62</td>
<td>Disorders of Thought and Volition: Schizophrenia</td>
<td>1389</td>
</tr>
<tr>
<td>63</td>
<td>Disorders of Mood and Anxiety</td>
<td>1402</td>
</tr>
<tr>
<td>64</td>
<td>Autism and Other Neurodevelopmental Disorders Affecting Cognition</td>
<td>1425</td>
</tr>
<tr>
<td>65</td>
<td>Learning and Memory</td>
<td>1441</td>
</tr>
<tr>
<td>66</td>
<td>Cellular Mechanisms of Implicit Memory Storage and the Biological Basis of Individuality</td>
<td>1461</td>
</tr>
</tbody>
</table>
Contents in Brief

67 Prefrontal Cortex, Hippocampus, and the Biology of Explicit Memory Storage 1487

Appendices

A Review of Basic Circuit Theory 1525
B The Neurological Examination of the Patient 1533

C Circulation of the Brain 1550
D The Blood–Brain Barrier, Choroid Plexus, and Cerebrospinal Fluid 1565
E Neural Networks 1581
F Theoretical Approaches to Neuroscience: Examples from Single Neurons to Networks 1601

Index 1618
Contents

Preface xli
Acknowledgments xliii
Contributors xlv

Part I
Overall Perspective

1 The Brain and Behavior 5
Eric R. Kandel, A. J. Hudspeth
Two Opposing Views Have Been Advanced on the Relationship Between Brain and Behavior 6
The Brain Has Distinct Functional Regions 9
The First Strong Evidence for Localization of Cognitive Abilities Came from Studies of Language Disorders 10
Affective States Are Also Mediated by Local, Specialized Systems in the Brain 16
Mental Processes Are the End Product of the Interactions Between Elementary Processing Units in the Brain 17
Selected Readings 18
References 19

2 Nerve Cells, Neural Circuitry, and Behavior 21
Eric R. Kandel, Ben A. Barres, A. J. Hudspeth
The Nervous System Has Two Classes of Cells 22
Nerve Cells Are the Signaling Units of the Nervous System 22
Glial Cells Support Nerve Cells 24
Each Nerve Cell Is Part of a Circuit That Has One or More Specific Behavioral Functions 27
Signaling Is Organized in the Same Way in All Nerve Cells 29
The Input Component Produces Graded Local Signals 31
The Trigger Zone Makes the Decision to Generate an Action Potential 31
The Conductive Component Propagates an All-or-None Action Potential 33
The Output Component Releases Neurotransmitter 35
The Transformation of the Neural Signal from Sensory to Motor Is Illustrated by the Stretch-Reflex Pathway 35
Nerve Cells Differ Most at the Molecular Level 35
Neural Network Models Simulate the Brain’s Parallel Processing of Information 36
Neural Connections Can Be Modified by Experience 37
Selected Readings 38
References 38

3 Genes and Behavior 39
Cornelia I. Bargmann, T. Conrad Gilliam
Genes, Genetic Analysis, and Heritability in Behavior 41
The Nature of the Gene 41
Genes Are Arranged on Chromosomes 42
The Relationship Between Genotype and Phenotype 43
Genes Are Conserved Through Evolution 45
The Role of Genes in Behavior Can Be Studied in Animal Models 46
Circadian Rhythm Is Generated by a Transcriptional Oscillator in Flies, Mice, and Humans 47
Natural Variation in a Protein Kinase Regulates Activity in Flies and Honeybees 52
The Social Behaviors of Several Species Are Regulated by Neuropeptide Receptors 54
Genetic Studies of Human Behavior and Its Abnormalities 55
Neurological Disorders in Humans Suggest That Distinct Genes Affect Different Brain Functions 57
Autism-Related Disorders Exemplify the Complex Genetic Basis of Behavioral Traits 57
Psychiatric Disorders and the Challenge of Understanding Multigenic Traits 58
Complex Inheritance and Genetic Imprinting in Human Genetics 58
Multigenic Traits: Many Rare Diseases or a Few Common Variants? 59
An Overall View 62
Glossary 63
Selected Readings 64
References 64

Part II
Cell and Molecular Biology of the Neuron

4 The Cells of the Nervous System 71
Steven A. Siegelbaum, John Koester
Neurons and Glia Share Many Structural and Molecular Characteristics 71
The Cytoskeleton Determines Cell Shape 74
Protein Particles and Organelles Are Actively Transported Along the Axon and Dendrites 79
Fast Axonal Transport Carries Membranous Organelles 80
Slow Axonal Transport Carries Cytosolic Proteins and Elements of the Cytoskeleton 83
Proteins Are Made in Neurons as in Other Secretory Cells 84
Secretory and Membrane Proteins Are Synthesized and Modified in the Endoplasmic Reticulum 84
Secretory Proteins Are Modified in the Golgi Complex 86
Surface Membrane and Extracellular Substances Are Recycled in the Cell 87
Glial Cells Play Diverse Roles in Neural Function 88
Glia Form the Insulating Sheaths for Axons 88
Astrocytes Support Synaptic Signaling 88
Choroid Plexus and Ependymal Cells Produce Cerebrospinal Fluid 95
Microglia in the Brain Are Derived from Bone Marrow 95
An Overall View 96

5 Ion Channels 100
Steven A. Siegelbaum, John Koester
Rapid Signaling in the Nervous System Depends on Ion Channels 101
Ion Channels Are Proteins That Span the Cell Membrane 101
Currents Through Single Ion Channels Can Be Recorded 104
Ion Channels in All Cells Share Several Characteristics 107
The Flux of Ions Through a Channel Is Passive 107
The Opening and Closing of a Channel Involve Conformational Changes 108
The Structure of Ion Channels Is Inferred from Biophysical, Biochemical, and Molecular Biological Studies 110
Ion Channels Can Be Grouped into Gene Families 113
The Closed and Open Structures of Potassium Channels Have Been Resolved by X-Ray Crystallography 116
The Structural Basis of Chloride Selectivity Reveals a Close Relation Between Ion Channels and Ion Transporters 119
An Overall View 123
Selected Readings 124
References 124

6 Membrane Potential and the Passive Electrical Properties of the Neuron . . 126
John Koester, Steven A. Siegelbaum
The Resting Membrane Potential Results from the Separation of Charge Across the Cell Membrane 127
The Resting Membrane Potential Is Determined by Nongated and Gated Ion Channels 127
Open Channels in Glial Cells Are Permeable to Potassium Only 129
Open Channels in Resting Nerve Cells Are Permeable to Several Ion Species 130
The Electrochemical Gradients of Sodium, Potassium, and Calcium Are Established by Active Transport of the Ions 131
Chloride Ions Are Also Actively Transported 134
The Balance of Ion Fluxes That Maintains the Resting Membrane Potential Is Abolished During the Action Potential 134
The Contributions of Different Ions to the Resting Membrane Potential Can Be Quantified by the Goldman Equation 135

Selected Readings 97
References 98
The Functional Properties of the Neuron Can Be Represented as an Electrical Equivalent Circuit 135
The Passive Electrical Properties of the Neuron Affect Electrical Signaling 138

Membrane Capacitance Slows the Time Course of Electrical Signals 139
Membrane and Axoplasmic Resistance Affect the Efficiency of Signal Conduction 142
Large Axons Are More Easily Excited Than Small Axons 143
Passive Membrane Properties and Axon Diameter Affect the Velocity of Action Potential Propagation 144

An Overall View 145
Selected Readings 147
References 147

7 Propagated Signaling: The Action Potential 148

John Koester, Steven A. Siegelbaum
The Action Potential Is Generated by the Flow of Ions Through Voltage-Gated Channels 149
Sodium and Potassium Currents Through Voltage-Gated Channels Are Recorded with the Voltage Clamp 149
Voltage-Gated Sodium and Potassium Conductances Are Calculated from Their Currents 153
The Action Potential Can Be Reconstructed from the Properties of Sodium and Potassium Channels 156
Variations in the Properties of Voltage-Gated Ion Channels Expand the Signaling Capabilities of Neurons 158
The Nervous System Expresses a Rich Variety of Voltage-Gated Ion Channels 158
Gating of Voltage-Sensitive Ion Channels Can Be Influenced by Various Cytoplasmic Factors 159
Excitability Properties Vary Between Regions of the Neuron 159
Excitability Properties Vary Between Types of Neurons 160

The Mechanisms of Voltage-Gating and Ion Permeation Have Been Inferred from Electrophysiological Measurements 162
Voltage-Gated Sodium Channels Open and Close in Response to Redistribution of Charges Within the Channel 162
Voltage-Gated Sodium Channels Select for Sodium on the Basis of Size, Charge, and Energy of Hydration of the Ion 164

Voltage-Gated Potassium, Sodium, and Calcium Channels Stem from a Common Ancestor and Have Similar Structures 164
X-Ray Crystallographic Analysis of Voltage-Gated Channel Structures Provides Insight into Voltage-Gating 166
The Diversity of Voltage-Gated Channel Types Is Generated by Several Genetic Mechanisms 167

An Overall View 170
Selected Readings 170
References 171

Part III
Synaptic Transmission

8 Overview of Synaptic Transmission 177

Steven A. Siegelbaum, Eric R. Kandel
Synapses Are Either Electrical or Chemical 177
Electrical Synapses Provide Instantaneous Signal Transmission 178
Cells at an Electrical Synapse Are Connected by Gap-Junction Channels 180
Electrical Transmission Allows the Rapid and Synchronous Firing of Interconnected Cells 183
Gap Junctions Have a Role in Glial Function and Disease 184

Chemical Synapses Can Amplify Signals 184
Neurotransmitters Bind to Postsynaptic Receptors 185
Postsynaptic Receptors Gate Ion Channels Either Directly or Indirectly 186

Selected Readings 187
References 188

9 Signaling at the Nerve-Muscle Synapse: Directly Gated Transmission 189

Eric R. Kandel, Steven A. Siegelbaum
The Neuromuscular Junction Is a Well-Studied Example of Directly Gated Synaptic Transmission 189
The Motor Neuron Excites the Muscle by Opening Ligand-Gated Ion Channels at the End-Plate 191
The End-Plate Potential Is Produced by Ionic Current Through Acetylcholine Receptor-Channels 192
The Ion Channel at the End-Plate Is Permeable to Both Sodium and Potassium 193

Selected Readings 197
References 198
The Current Through Single Acetylcholine Receptor-Channels Can Be Measured Using the Patch Clamp 195

Individual Receptor-Channels Conduct All-or-None Unitary Currents 195

Four Factors Determine the End-Plate Current 198

The Molecular Properties of the Acetylcholine Receptor-Channel Are Known 199

An Overall View 203

Postscript: The End-Plate Current Can Be Calculated from an Equivalent Circuit 205

Selected Readings 208

References 208

10 Synaptic Integration in the Central Nervous System 210

Steven A. Siegelbaum, Eric R. Kandel, Rafael Yuste

Central Neurons Receive Excitatory and Inhibitory Inputs 211

Excitatory and Inhibitory Synapses Have Distinctive Ultrastructures 211

Excitatory Synaptic Transmission Is Mediated by Ionotropic Glutamate Receptor-Channels That Are Permeable to Sodium and Potassium 213

The Excitatory Ionotropic Glutamate Receptors Are Encoded by a Distinct Gene Family 215

Glutamate Receptors Are Constructed from a Set of Modules 218

NMDA and AMPA Receptors Are Organized by a Network of Proteins at the Postsynaptic Density 220

Inhibitory Synaptic Action Is Usually Mediated by Ionotropic GABA and Glycine Receptor-Channels That Are Permeable to Chloride 222

Currents Through Single GABA and Glycine Receptor-Channels Can Be Recorded 223

Chloride Currents Through Inhibitory GABA, and Glycine Receptor-Channels Normally Inhibit the Postsynaptic Cell 225

Ionotropic Glutamate, GABA, and Glycine Receptors Are Transmembrane Proteins Encoded by Two Distinct Gene Families 226

Ionotropic GABA, and Glycine Receptors Are Homologous to Nicotinic ACh Receptors 226

Some Synaptic Actions Depend on Other Types of Ionotropic Receptors in the Central Nervous System 227

Excitatory and Inhibitory Synaptic Actions Are Integrated by the Cell into a Single Output 227

Synaptic Inputs Are Integrated to Fire an Action Potential at the Axon Initial Segment 227

Dendrites Are Electrically Excitable Structures That Can Fire Action Potentials 228

Synapses on a Central Neuron Are Grouped According to Physiological Function 230

An Overall View 232

Selected Readings 234

References 235

11 Modulation of Synaptic Transmission: Second Messengers............. 236

Steven A. Siegelbaum, David E. Clapham, James H. Schwartz

The Cyclic AMP Pathway Is the Best Understood Second-Messenger Signaling Cascade Initiated by G Protein-Coupled Receptors 237

The Second-Messenger Pathways Initiated by G Protein-Coupled Receptors Share a Common Molecular Logic 240

A Family of G Proteins Activates Distinct Second-Messenger Pathways 240

Hydrolysis of Phospholipids by Phospholipase C Produces Two Important Second Messengers, IP3 and Diacylglycerol 242

Hydrolysis of Phospholipids by Phospholipase A2 Liberates Arachidonic Acid to Produce Other Second Messengers 245

Transcellular Messengers Are Important for Regulating Presynaptic Function 247

Endocannabinoids Are Derived from Arachidonic Acid 247

The Gaseous Second Messengers, Nitric Oxide and Carbon Monoxide, Stimulate Cyclic GMP Synthesis 247

A Family of Receptor Tyrosine Kinases Mediates Some Metabotropic Receptor Effects 248

The Physiological Actions of Ionotropic and Metabotropic Receptors Differ 250

Second-Messenger Cascades Can Increase or Decrease the Opening of Many Types of Ion Channels 250

G Proteins Can Modulate Ion Channels Directly 253

Cyclic AMP-Dependent Protein Phosphorylation Can Close Potassium Channels 255

Synaptic Actions Mediated by Phosphorylation Are Terminated by Phosphoprotein Phosphatases 255
13 Neurotransmitters 289
James H. Schwartz, Jonathan A. Javitch
A Chemical Messenger Must Meet Four Criteria to Be Considered a Neurotransmitter 289
Only a Few Small-Molecule Substances Act as Transmitters 290
Acetylcholine 291
Biogenic Amine Transmitters 291
Catecholamine Transmitters 291
Serotonin 293
Histamine 294
Amino Acid Transmitters 294
ATP and Adenosine 294
Small-Molecule Transmitters Are Actively Taken Up into Vesicles 295
Many Neuroactive Peptides Serve as Transmitters 297
Peptides and Small-Molecule Transmitters Differ in Several Ways 300
Peptides and Small-Molecule Transmitters Coexist and Can Be Co-released 300
Removal of Transmitter from the Synaptic Cleft Terminates Synaptic Transmission 301
An Overall View 304
Selected Readings 305
References 305

14 Diseases of the Nerve and Motor Unit 307
Robert H. Brown, Stephen C. Cannon, Lewis P. Rowland
Disorders of the Peripheral Nerve, Neuromuscular Junction, and Muscle Can Be Distinguished Clinically 308
A Variety of Diseases Target Motor Neurons and Peripheral Nerves 309
Motor Neuron Diseases Do Not Affect Sensory Neurons 309
Diseases of Peripheral Nerves Affect Conduction of the Action Potential 310
The Molecular Bases of Some Inherited Peripheral Neuropathies Have Been Defined 311
Diseases of the Neuromuscular Junction Have Multiple Causes 312
Myasthenia Gravis Is the Best Studied Example of a Neuromuscular Junction Disease 314

12 Transmitter Release 260
Steven A. Siegelbaum, Eric R. Kandel, Thomas C. Südhof
Transmitter Release Is Regulated by Depolarization of the Presynaptic Terminal 260
Release Is Triggered by Calcium Influx 263
The Relation Between Presynaptic Calcium Concentration and Release 265
Several Classes of Calcium Channels Mediate Transmitter Release 265
Transmitter Is Released in Quantal Units 267
Transmitter Is Stored and Released by Synaptic Vesicles 268
Synaptic Vesicles Discharge Transmitter by Exocytosis and Are Recycled by Endocytosis 271
Capacitance Measurements Provide Insight into the Kinetics of Exocytosis and Endocytosis 272
Exocytosis Involves the Formation of a Temporary Fusion Pore 272
The Synaptic Vesicle Cycle Involves Several Steps 275
Exocytosis of Synaptic Vesicles Relies on a Highly Conserved Protein Machinery 278
The Synapsins Are Important for Vesicle Restraint and Mobilization 278
SNARE Proteins Catalyze Fusion of Vesicles with the Plasma Membrane 278
Calcium Binding to Synaptotagmin Triggers Transmitter Release 280
The Fusion Machinery Is Embedded in a Conserved Protein Scaffold at the Active Zone 281
Modulation of Transmitter Release Underlies Synaptic Plasticity 281
Activity-Dependent Changes in Intracellular Free Calcium Can Produce Long-Lasting Changes in Release 283
Axo-axonic Synapses on Presynaptic Terminals Regulate Transmitter Release 285
An Overall View 285
Selected Readings 287
References 287
Many Specialized Receptors Are Employed by the Somatosensory System 479

Mechanoreceptors Mediate Touch and Proprioception 480

Proprioceptors Measure Muscle Activity and Joint Positions 482

Nociceptors Mediate Pain 485

Thermal Receptors Detect Changes in Skin Temperature 485

Itch Is a Distinctive Cutaneous Sensation 486

Visceral Sensations Represent the Status of Various Internal Organs 487

Somatosensory Information Enters the Central Nervous System Through Cranial and Spinal Nerves 488

Somatosensory Information Flows from the Spinal Cord to the Thalamus Through Parallel Pathways 488

The Dorsal Column–Medial Lemniscal System Relays Tactile and Proprioceptive Information 491

The Spinothalamic System Conveys Noxious, Thermal, and Visceral Information 492

The Thalamus Has a Number of Specialized Somatosensory Regions 494

The Ventral Posterior Nucleus Relays Tactile and Proprioceptive Information 494

Noxious, Thermal, and Visceral Information Is Processed in Several Thalamic Nuclei 494

An Overall View 495

Selected Readings 495

References 496

23 Touch 498

Active and Passive Touch Evoke Similar Responses in Mechanoreceptors 499

The Hand Has Four Types of Mechanoreceptors 499

Receptive Fields Define the Zone of Tactile Sensitivity 502

Two-Point Discrimination Tests Measure Texture Perception 504

Slowly Adapting Fibers Detect Object Pressure and Form 504

Rapidly Adapting Fibers Detect Motion and Vibration 508
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Mechanisms Shut Off the Cascade</td>
<td>583</td>
</tr>
<tr>
<td>Defects in Phototransduction Cause Disease</td>
<td>585</td>
</tr>
<tr>
<td>Ganglion Cells Transmit Neural Images to the Brain</td>
<td>585</td>
</tr>
<tr>
<td>The Two Major Types of Ganglion Cells Are</td>
<td>585</td>
</tr>
<tr>
<td>ON Cells and OFF Cells</td>
<td>585</td>
</tr>
<tr>
<td>Many Ganglion Cells Respond Strongly to Edges in the Image</td>
<td>586</td>
</tr>
<tr>
<td>The Output of Ganglion Cells Emphasizes Temporal Changes in Stimuli</td>
<td>587</td>
</tr>
<tr>
<td>Retinal Output Emphasizes Moving Objects</td>
<td>587</td>
</tr>
<tr>
<td>Several Ganglion Cell Types Project to the Brain Through Parallel Pathways</td>
<td>592</td>
</tr>
<tr>
<td>A Network of Interneurons Shapes the Retinal Output</td>
<td>592</td>
</tr>
<tr>
<td>Parallel Pathways Originate in Bipolar Cells</td>
<td>592</td>
</tr>
<tr>
<td>Spatial Filtering Is Accomplished by Lateral Inhibition</td>
<td>592</td>
</tr>
<tr>
<td>Temporal Filtering Occurs in Synapses and Feedback Circuits</td>
<td>593</td>
</tr>
<tr>
<td>Color Vision Begins in Cone-Selective Circuits</td>
<td>594</td>
</tr>
<tr>
<td>Congenital Color Blindness Takes Several Forms</td>
<td>595</td>
</tr>
<tr>
<td>Rod and Cone Circuits Merge in the Inner Retina</td>
<td>596</td>
</tr>
<tr>
<td>The Retina’s Sensitivity Adapts to Changes in Illumination</td>
<td>597</td>
</tr>
<tr>
<td>Light Adaptation Is Apparent in Retinal Processing and Visual Perception</td>
<td>597</td>
</tr>
<tr>
<td>Multiple Gain Controls Occur Within the Retina</td>
<td>599</td>
</tr>
<tr>
<td>Light Adaptation Alters Spatial Processing</td>
<td>599</td>
</tr>
<tr>
<td>An Overall View</td>
<td>600</td>
</tr>
<tr>
<td>Selected Readings</td>
<td>600</td>
</tr>
<tr>
<td>References</td>
<td>600</td>
</tr>
</tbody>
</table>

27 **Intermediate-Level Visual Processing and Visual Primitives** ... 602

Charles D. Gilbert

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Models of Object Geometry Help the Brain Analyze Shapes</td>
<td>604</td>
</tr>
<tr>
<td>Depth Perception Helps Segregate Objects from Background</td>
<td>608</td>
</tr>
<tr>
<td>Local Movement Cues Define Object Trajectory and Shape</td>
<td>608</td>
</tr>
<tr>
<td>Context Determines the Perception of Visual Stimuli</td>
<td>611</td>
</tr>
</tbody>
</table>

28 **High-Level Visual Processing: Cognitive Influences**............ 621

Thomas D. Albright

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Level Visual Processing Is Concerned with Object Identification</td>
<td>621</td>
</tr>
<tr>
<td>The Inferior Temporal Cortex Is the Primary Center for Object Perception</td>
<td>622</td>
</tr>
<tr>
<td>Clinical Evidence Identifies the Inferior Temporal Cortex as Essential for Object Recognition</td>
<td>624</td>
</tr>
<tr>
<td>Neurons in the Inferior Temporal Cortex Encode Complex Visual Stimuli</td>
<td>624</td>
</tr>
<tr>
<td>Neurons in the Inferior Temporal Cortex Are Functionally Organized in Columns</td>
<td>624</td>
</tr>
<tr>
<td>The Inferior Temporal Cortex Is Part of a Network of Cortical Areas Involved in Object Recognition</td>
<td>626</td>
</tr>
<tr>
<td>Object Recognition Relies on Perceptual Constancy</td>
<td>626</td>
</tr>
<tr>
<td>Categorical Perception of Objects Simplifies Behavior</td>
<td>628</td>
</tr>
<tr>
<td>Visual Memory Is a Component of High-Level Visual Processing</td>
<td>630</td>
</tr>
<tr>
<td>Implicit Visual Learning Leads to Changes in the Selectivity of Neuronal Responses</td>
<td>631</td>
</tr>
<tr>
<td>Explicit Visual Learning Depends on Linkage of the Visual System and Declarative Memory Formation</td>
<td>631</td>
</tr>
<tr>
<td>Associative Recall of Visual Memories Depends on Top-Down Activation of the Cortical Neurons That Process Visual Stimuli</td>
<td>635</td>
</tr>
<tr>
<td>An Overall View</td>
<td>636</td>
</tr>
<tr>
<td>Selected Readings</td>
<td>636</td>
</tr>
<tr>
<td>References</td>
<td>637</td>
</tr>
</tbody>
</table>
29 Visual Processing and Action......638
Michael E. Goldberg, Robert H. Wurtz
Successive Fixations Focus Our Attention in the Visual Field 638
Attention Selects Objects for Further Visual Examination 639
Activity in the Parietal Lobe Correlates with Attention Paid to Objects 640
The Visual Scene Remains Stable Despite Continual Shifts in the Retinal Image 642
Vision Lapses During Saccades 643
The Parietal Cortex Provides Visual Information to the Motor System 647
An Overall View 652
Selected Readings 652
References 653

30 The Inner Ear654
A. J. Hudspeth
The Ear Has Three Functional Parts 655
Hearing Commences with the Capture of Sound Energy by the Ear 656
The Hydrodynamic and Mechanical Apparatus of the Cochlea Delivers Mechanical Stimuli to the Receptor Cells 659
The Basilar Membrane Is a Mechanical Analyzer of Sound Frequency 659
The Organ of Corti Is the Site of Mechanoelectrical Transduction in the Cochlea 660
Hair Cells Transform Mechanical Energy into Neural Signals 664
Deflection of the Hair Bundle Initiates Mechanoelectrical Transduction 664
Mechanical Force Directly Opens Transduction Channels 665
Direct Mechanoelectrical Transduction Is Rapid 666
The Temporal Responsiveness of Hair Cells Determines Their Sensitivity 667
Hair Cells Adapt to Sustained Stimulation 668
Hair Cells Are Tuned to Specific Stimulus Frequencies 669
Sound Energy Is Mechanically Amplified in the Cochlea 671
Hair Cells Use Specialized Ribbon Synapses 674

Auditory Information Flows Initially Through the Cochlear Nerve 675
Bipolar Neurons in the Spiral Ganglion Innervate Cochlear Hair Cells 675
Cochlear Nerve Fibers Encode Stimulus Frequency and Intensity 676
Sensorineural Hearing Loss Is Common but Treatable 678
An Overall View 678
Selected Readings 680
References 680

31 The Auditory Central Nervous System682
Donata Oertel, Allison J. Doupe
Multiple Types of Information Are Present in Sounds 683
The Neural Representation of Sound Begins in the Cochlear Nuclei 684
The Cochlear Nerve Imposes a Tonotopic Organization on the Cochlear Nuclei and Distributes Acoustic Information into Parallel Pathways 686
The Ventral Cochlear Nucleus Extracts Information About the Temporal and Spectral Structure of Sounds 686
The Dorsal Cochlear Nucleus Integrates Acoustic with Somatosensory Information in Making Use of Spectral Cues for Localizing Sounds 690
The Superior Olivary Complex of Mammals Contains Separate Circuits for Detecting Interaural Time and Intensity Differences 690
The Medial Superior Olive Generates a Map of Interaural Time Differences 690
The Lateral Superior Olive Detects Interaural Intensity Differences 691
Efferent Signals from the Superior Olivary Complex Provide Feedback to the Cochlea 693
Brain Stem Pathways Converge in the Inferior Colliculus 694
Sound Location Information from the Inferior Colliculus Creates a Spatial Map of Sound in the Superior Colliculus 695
Midbrain Sound-Localization Pathways Are Sensitive to Experience in Early Life 697
The Inferior Colliculus Transmits Auditory Information to the Cerebral Cortex 700
The Auditory Cortex Maps Numerous Aspects of Sound 700
Auditory Information Is Processed in Multiple Cortical Areas 701
Insectivorous Bats Have Cortical Areas Specialized for Behaviorally Relevant Features of Sound 701
A Second Sound-Localization Pathway from the Inferior Colliculus Involves the Cerebral Cortex in Gaze Control 703
Auditory Circuits in the Cerebral Cortex Are Segregated into Separate Processing Streams 704
The Cerebral Cortex Modulates Processing in Subcortical Auditory Areas 705

Hearing Is Crucial for Vocal Learning and Production in Both Humans and Songbirds 705
Normal Vocal Behavior Cannot Be Learned in Isolation 705
Vocal Learning Is Optimal During a Sensitive Period 707
Both Humans and Songbirds Possess Specialized Neural Networks for Vocalization 707
Songbirds Have Feature Detectors for Learned Vocalizations 708

An Overall View 710
Selected Readings 710
References 711

32 Smell and Taste: The Chemical Senses 712
Linda B. Buck, Cornelia I. Bargmann
A Large Number of Olfactory Receptor Proteins Initiate the Sense of Smell 713
Mammals Share a Large Family of Odorant Receptors 714
Different Combinations of Receptors Encode Different Odorants 715
Olfactory Information Is Transformed Along the Pathway to the Brain 716
Odorants Are Encoded in the Nose by Dispersed Neurons 716
Sensory Inputs in the Olfactory Bulb Are Arranged by Receptor Type 717
The Olfactory Bulb Transmits Information to the Olfactory Cortex 720
Output from the Olfactory Cortex Reaches Higher Cortical and Limbic Areas 721
Olfactory Acuity Varies in Humans 721

Odors Elicit Characteristic Innate Behaviors 721
Pheromones Are Detected in Two Olfactory Structures 721
Invertebrate Olfactory Systems Can Be Used to Study Odor Coding and Behavior 722
The Anatomy of the Insect Olfactory System Resembles That of Vertebrates 722
Olfactory Cues Elicit Stereotyped Behaviors and Physiological Responses in the Nematode 724
Strategies for Olfaction Have Evolved Rapidly 725

The Gustatory System Controls the Sense of Taste 726
Taste Has Five Submodalities or Qualities 726
Taste Detection Occurs in Taste Buds 727
Each Taste Is Detected by a Distinct Sensory Transduction Mechanism and Distinct Population of Taste Cells 728
Sensory Neurons Carry Taste Information from the Taste Buds to the Brain 732
Taste Information Is Transmitted from the Thalamus to the Gustatory Cortex 732
Perception of Flavor Depends on Gustatory, Olfactory, and Somatosensory Inputs 733
Insect Taste Organs Are Distributed Widely on the Body 733

An Overall View 733
Selected Readings 734
References 734

Part VI
Movement

33 The Organization and Planning of Movement 743
Daniel M. Wolpert, Keir G. Pearson, Claude P.J. Ghez
Motor Commands Arise Through Sensorimotor Transformations 744
The Central Nervous System Forms Internal Models of Sensorimotor Transformations 746
Movement Inaccuracies Arise from Errors and Variability in the Transformations 748
Different Coordinate Systems May Be Employed at Different Stages of Sensorimotor Transformations 749
Stereotypical Patterns Are Employed in Many Movements 750
Motor Signals Are Subject to Feedforward and Feedback Control 753
Feedforward Control Does Not Use Sensory Feedback 754
Feedback Control Uses Sensory Signals to Correct Movements 756
Prediction Compensates for Sensorimotor Delays 756
Sensory Processing Is Different for Action and Perception 760
Motor Systems Must Adapt to Development and Experience 761
Motor Learning Involves Adapting Internal Models for Novel Kinematic and Dynamic Conditions 763
Kinematic and Dynamic Motor Learning Rely on Different Sensory Modalities 763
An Overall View 766
Selected Readings 766
References 766

34 The Motor Unit and Muscle Action 768
Roger M. Enoka, Keir G. Pearson
The Motor Unit Is the Elementary Unit of Motor Control 768
A Motor Unit Consists of a Motor Neuron and Multiple Muscle Fibers 768
The Properties of Motor Units Vary 770
Physical Activity Can Alter Motor Unit Properties 772
Muscle Force Is Controlled by the Recruitment and Discharge Rate of Motor Units 773
The Input–Output Properties of Motor Neurons Are Modified by Input from the Brain Stem 774
Muscle Force Depends on the Structure of Muscle 776
The Sarcomere Contains the Contractile Proteins 776
Noncontractile Elements Provide Essential Structural Support 777
Contractile Force Depends on Muscle Fiber Activation, Length, and Velocity 777
Muscle Torque Depends on Musculoskeletal Geometry 780
Different Movements Require Different Activation Strategies 783
Contraction Velocity Can Vary in Magnitude and Direction 783

35 Spinal Reflexes 790
Keir G. Pearson, James E. Gordon
Reflexes Are Adaptable to Particular Motor Tasks 791
Spinal Reflexes Produce Coordinated Patterns of Muscle Contraction 792
Cutaneous Reflexes Produce Complex Movements That Serve Protective and Postural Functions 792
The Stretch Reflex Resists the Lengthening of a Muscle 792
Local Spinal Circuits Contribute to the Coordination of Reflex Responses 796
The Stretch Reflex Involves a Monosynaptic Pathway 796
Ia Inhibitory Interneurons Coordinate the Muscles Surrounding a Joint 797
Divergence in Reflex Pathways Amplifies Sensory Inputs and Coordinates Muscle Contractions 798
Convergence of Inputs on Ib Interneurons Increases the Flexibility of Reflex Responses 799
Central Motor Commands and Cognitive Processes Can Alter Synaptic Transmission in Spinal Reflex Pathways 799
Central Neurons Can Regulate the Strength of Spinal Reflexes at Three Sites in the Reflex Pathway 801
Gamma Motor Neurons Adjust the Sensitivity of Muscle Spindles 802
Proprioceptive Reflexes Play an Important Role in Regulating Both Voluntary and Automatic Movements 804
Muscles Involving Limb Muscles Are Mediated Through Spinal and Supraspinal Pathways 804
Stretch Reflexes Reinforce Central Commands for Movements 806
Damage to the Central Nervous System Produces Characteristic Alterations in Reflex Response and Muscle Tone 807
Interruption of Descending Pathways to the Spinal Cord Frequently Produces Spasticity 809
Transsection of the Spinal Cord in Humans Leads to a Period of Spinal Shock Followed by Hyperreflexia 809
Neurons in the Inferior Parietal Cortex Associate the Physical Properties of an Object with Specific Motor Acts 877
The Activity of Neurons of the Inferior Parietal Cortex Is Influenced by the Purpose of an Action 877
The Activity of Neurons in the Ventral Premotor Cortex Correlates with Motor Acts 878
The Primary Motor Cortex Transforms a Grasping Action Plan into Appropriate Finger Movements 882
The Supplementary Motor Complex Plays a Crucial Role in Selecting and Executing Appropriate Voluntary Actions 883
The Cortical Motor System Is Involved in Planning Action 884
Cortical Motor Areas Apply the Rules That Govern Behavior 884
The Premotor Cortex Contributes to Perceptual Decisions That Guide Motor Behavior 886
The Premotor Cortex Is Involved in Learning Motor Skills 888
Cortical Motor Areas Contribute to Understanding the Observed Actions of Others 888
The Relationship between Motor Acts, the Sense of Volition, and Free Will Is Uncertain 891
An Overall View 891
Selected Readings 892
References 892

39 The Control of Gaze 894
Michael E. Goldberg, Mark F. Walker
Six Neuronal Control Systems Keep the Eyes on Target 895
An Active Fixation System Keeps the Fovea on a Stationary Target 895
The Saccadic System Points the Fovea Toward Objects of Interest 895
The Smooth-Pursuit System Keeps Moving Targets on the Fovea 895
The Vergence System Aligns the Eyes to Look at Targets at Different Depths 896
The Eye Is Moved by the Six Extraocular Muscles 897
Eye Movements Rotate the Eye in the Orbit 897
The Six Extraocular Muscles Form Three Agonist–Antagonist Pairs 898
Movements of the Two Eyes Are Coordinated 899
The Extraocular Muscles Are Controlled by Three Cranial Nerves 899
Extraocular Motor Neurons Encode Eye Position and Velocity 901
The Motor Circuits for Saccades Lie in the Brain Stem 901
Horizontal Saccades Are Generated in the Pontine Reticular Formation 901
Vertical Saccades Are Generated in the Mesencephalic Reticular Formation 906
Brain Stem Lesions Result in Characteristic Deficits in Eye Movements 906
Saccades Are Controlled by the Cerebral Cortex Through the Superior Colliculus 906
The Superior Colliculus Integrates Visual and Motor Information into Oculomotor Signals to the Brain Stem 906
The Rostral Superior Colliculus Facilitates Visual Fixation 909
The Basal Ganglia Inhibit the Superior Colliculus 909
Two Regions of Cerebral Cortex Control the Superior Colliculus 909
The Control of Saccades Can Be Modified by Experience 912
Smooth Pursuit Involves the Cerebral Cortex, Cerebellum, and Pons 912
Some Gaze Shifts Require Coordinated Head and Eye Movements 913
An Overall View 914
Selected Readings 914
References 915

40 The Vestibular System 917
Michael E. Goldberg, Mark F. Walker, A. J. Hudspeth
The Vestibular Apparatus in the Inner Ear Contains Five Receptor Organs 917
Hair Cells Transduce Mechanical Stimuli into Receptor Potentials 919
The Semicircular Canals Sense Head Rotation 919
The Otolith Organs Sense Linear Accelerations 921
Most Movements Elicit Complex Patterns of Vestibular Stimulation 922
Vestibulo-Ocular Reflexes Stabilize the Eyes and Body When the Head Moves 922
The Rotational Vestibulo-Ocular Reflex Compensates for Head Rotation 923
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Otolithic Reflexes Compensate for Linear Motion and Head Deviations</td>
<td>924</td>
</tr>
<tr>
<td>Vestibulo-Ocular Reflexes Are Supplemented by Optokinetic Responses</td>
<td>924</td>
</tr>
<tr>
<td>Central Connections of the Vestibular Apparatus Integrate Vestibular, Visual, and Motor Signals</td>
<td>924</td>
</tr>
<tr>
<td>The Vestibular Nerve Carries Information on Head Velocity to the Vestibular Nuclei</td>
<td>924</td>
</tr>
<tr>
<td>A Brain Stem Network Connects the Vestibular System with the Oculomotor System</td>
<td>926</td>
</tr>
<tr>
<td>Two Visual Pathways Drive the Optokinetic Reflexes</td>
<td>926</td>
</tr>
<tr>
<td>The Cerebral Cortex Integrates Vestibular, Visual, and Somatosensory Inputs</td>
<td>928</td>
</tr>
<tr>
<td>The Cerebellum Adjusts the Vestibulo-Ocular Reflex</td>
<td>929</td>
</tr>
<tr>
<td>Clinical Syndromes Elucidate Normal Vestibular Function</td>
<td>931</td>
</tr>
<tr>
<td>Unilateral Vestibular Hypofunction Causes Pathological Nystagmus</td>
<td>931</td>
</tr>
<tr>
<td>Bilateral Vestibular Hypofunction Interferes with Normal Vision</td>
<td>931</td>
</tr>
<tr>
<td>An Overall View</td>
<td>933</td>
</tr>
<tr>
<td>Selected Readings</td>
<td>933</td>
</tr>
<tr>
<td>References</td>
<td>933</td>
</tr>
<tr>
<td>41 Posture</td>
<td>935</td>
</tr>
<tr>
<td>Jane M. Macpherson, Fay B. Horak</td>
<td></td>
</tr>
<tr>
<td>Postural Equilibrium and Orientation Are Distinct Sensorimotor Processes</td>
<td>936</td>
</tr>
<tr>
<td>Postural Equilibrium Requires Control of the Body’s Center of Mass</td>
<td>936</td>
</tr>
<tr>
<td>Balance During Stance Requires Muscle Activation</td>
<td>936</td>
</tr>
<tr>
<td>Automatic Postural Responses Counteract Unexpected Disturbances</td>
<td>936</td>
</tr>
<tr>
<td>Automatic Postural Responses Adapt to Changes in the Requirements for Support</td>
<td>939</td>
</tr>
<tr>
<td>Anticipatory Postural Adjustments Compensate for Voluntary Movements</td>
<td>940</td>
</tr>
<tr>
<td>Postural Orientation Is Important for Optimizing Execution of Tasks, Interpreting Sensations, and Anticipating Disturbances to Balance</td>
<td>941</td>
</tr>
<tr>
<td>Sensory Information from Several Modalities Must Be Integrated to Maintain Equilibrium and Orientation</td>
<td>943</td>
</tr>
<tr>
<td>Somatosensory Afferents Are Important for Timing and Direction of Automatic Postural Responses</td>
<td>943</td>
</tr>
<tr>
<td>Vestibular Information Is Important for Balance on Unstable Surfaces and During Head Movements</td>
<td>947</td>
</tr>
<tr>
<td>Visual Information Provides Advance Knowledge of Potentially Destabilizing Situations and Assists in Orienting to the Environment</td>
<td>949</td>
</tr>
<tr>
<td>Information from a Single Sensory Modality Can Be Ambiguous</td>
<td>949</td>
</tr>
<tr>
<td>The Postural Control System Uses a Body Schema that Incorporates Internal Models for Balance</td>
<td>950</td>
</tr>
<tr>
<td>The Influence of Each Sensory Modality on Balance and Orientation Changes According to Task Requirements</td>
<td>951</td>
</tr>
<tr>
<td>Control of Posture Is Distributed in the Nervous System</td>
<td>951</td>
</tr>
<tr>
<td>Spinal Cord Circuits Are Sufficient for Maintaining Antigravity Support but Not Balance</td>
<td>951</td>
</tr>
<tr>
<td>The Brain Stem and Cerebellum Integrate Sensory Signals for Posture</td>
<td>954</td>
</tr>
<tr>
<td>The Spinocerebellum and Basal Ganglia Are Important in Adaptation of Posture</td>
<td>954</td>
</tr>
<tr>
<td>Cerebral Cortex Centers Contribute to Postural Control</td>
<td>956</td>
</tr>
<tr>
<td>An Overall View</td>
<td>958</td>
</tr>
<tr>
<td>Selected Readings</td>
<td>958</td>
</tr>
<tr>
<td>References</td>
<td>958</td>
</tr>
<tr>
<td>42 The Cerebellum</td>
<td>960</td>
</tr>
<tr>
<td>Stephen G. Lisberger, W. Thomas Thach</td>
<td></td>
</tr>
<tr>
<td>Cerebellar Diseases Have Distinctive Symptoms and Signs</td>
<td>961</td>
</tr>
<tr>
<td>The Cerebellum Has Several Functionally Distinct Regions</td>
<td>962</td>
</tr>
<tr>
<td>The Cerebellar Microcircuit Has a Distinct and Regular Organization</td>
<td>963</td>
</tr>
<tr>
<td>Neurons in the Cerebellar Cortex Are Organized into Three Layers</td>
<td>963</td>
</tr>
<tr>
<td>Two Afferent Fiber Systems Encode Information Differently</td>
<td>966</td>
</tr>
<tr>
<td>Parallel Pathways Compare Excitatory and Inhibitory Signals</td>
<td>967</td>
</tr>
<tr>
<td>Recurrent Loops Occur at Several Levels</td>
<td>968</td>
</tr>
<tr>
<td>The Vestibulocerebellum Regulates Balance and Eye Movements</td>
<td>969</td>
</tr>
<tr>
<td>The Spinocerebellum Regulates Body and Limb Movements</td>
<td>969</td>
</tr>
</tbody>
</table>
Diseases of the Basal Ganglia Are Associated with
Disturbances of Movement, Executive Function, Behavior, and Mood 991
Abnormalities in the Basal Ganglia Motor Circuit Result in a Wide Spectrum of Movement Disorders 991
A Deficiency of Dopamine in the Basal Ganglia Leads to Parkinsonism 991
Reduced and Abnormally Patterned Basal Ganglia Output Results in Hyperkinetic Disorders 995
Abnormal Neuronal Activity in Nonmotor Circuits Is Associated with Several Neuropsychiatric Disorders 997
An Overall View 997
Selected Readings 998
References 998

44 Genetic Mechanisms in Degenerative Diseases of the Nervous System . . . 999
Huda Y. Zoghbi
Expanded Trinucleotide Repeats Characterize Several Neurodegenerative Diseases 1000
Huntington Disease Involves Degeneration of the Striatum 1000
Spinobulbar Muscular Atrophy Is Due to Abnormal Function of the Androgen Receptor 1001
Hereditary Spinocerebellar Ataxias Include Several Diseases with Similar Symptoms but Distinct Etiologies 1001
Parkinson Disease Is a Common Degenerative Disorder of the Elderly 1002
Selective Neuronal Loss Occurs After Damage to Ubiquitously Expressed Genes 1004
Animal Models Are Powerful Tools for Studying Neurodegenerative Diseases 1006
Mouse Models Reproduce Many Features of Neurodegenerative Diseases 1006
Invertebrate Models Manifest Progressive Neurodegeneration 1007
Several Pathways Underlie the Pathogenesis of Neurodegenerative Diseases 1008
Protein Misfolding and Degradation Contribute to Parkinson Disease 1008
Protein Misfolding Triggers Pathological Alterations in Gene Expression 1009
Mitochondrial Dysfunction Exacerbates Neurodegenerative Disease 1010
46 The Modulatory Functions of the Brain Stem 1038
George B. Richerson, Gary Aston-Jones, Clifford B. Saper
Ascending Monoaminergic and Cholinergic Projections from the Brain Stem Maintain Arousal 1038
Monoaminergic and Cholinergic Neurons Share Many Properties and Functions 1040
Many Monoaminergic and Cholinergic Neurons Are Linked to the Sleep-Wake Cycle 1041
Monoaminergic and Cholinergic Neurons Maintain Arousal by Modulating Neurons in the Thalamus and Cortex 1041
Monoamines Regulate Many Brain Functions Other Than Arousal 1044
Cognitive Performance Is Optimized by Ascending Projections from Monoaminergic Neurons 1044
Monoamines Are Involved in Autonomic Regulation and Breathing 1048
Pain and Anti-nociceptive Pathways Are Modulated by Monoamines 1050
Monoamines Facilitate Motor Activity 1050
An Overall View 1050
Postscript: Evaluation of the Comatose Patient 1051
Selected Readings 1054
References 1055

47 The Autonomic Motor System and the Hypothalamus 1056
John P. Horn, Larry W. Swanson
The Autonomic Motor System Mediates Homeostasis 1057
The Autonomic System Contains Visceral Motor Neurons That Are Organized into Ganglia 1057
Preganglionic Neurons Are Localized in Three Regions Along the Brain Stem and Spinal Cord 1058
Sympathetic Ganglia Project to Many Targets Throughout the Body 1059
Parasympathetic Ganglia Innervate Single Organs 1060
The Enteric Ganglia Regulate the Gastrointestinal Tract 1061
Both the Pre- and Postsynaptic Neurons of the Autonomic Motor System Use Co-Transmission at Their Synaptic Connections 1061
Autonomic Behavior Is the Product of Cooperation Between All Three Autonomic Divisions 1066
Autonomic and Endocrine Function Is Coordinated
by a Central Autonomic Network Centered in the
Hypothalamus 1069

The Hypothalamus Integrates Autonomic, Endocrine, and
Behavioral Responses 1072

Magnocellular Neuroendocrine Neurons Control the
Pituitary Gland Directly 1072

Parvicellular Neuroendocrine Neurons Control the
Pituitary Gland Indirectly 1072

An Overall View 1076

Selected Readings 1076

References 1077

48 Emotions and Feelings 1079
Joseph E. LeDoux, Antonio R. Damasio

The Modern Search for the Emotional Brain Began in the
Late 19th Century 1081

The Amygdala Emerged as a Critical Regulatory Site in
Circuits of Emotions 1084

Studies of Avoidance Conditioning First Implicated the
Amygdala in Fear Responses 1084

Pavlovian Conditioning Is Used Extensively to
Study the Contribution of the Amygdala to
Learned Fear 1084

The Amygdala Has Been Implicated in Unconditioned
(Innate) Fear in Animals 1085

The Amygdala Is Also Important for
Fear in Humans 1085

The Amygdala Is Involved in Positive Emotions in
Animals and Humans 1088

Other Brain Areas Contribute to
Emotional Processing 1088

The Neural Correlates of Feeling Are Beginning to Be
Understood 1089

An Overall View 1092

Selected Readings 1092

References 1093

49 Homeostasis, Motivation, and
Addictive States 1095
Peter B. Shizgal, Steven E. Hyman

Drinking Occurs Both in Response to and in Anticipation
of Dehydration 1098

Body Fluids in the Intracellular and Extracellular
Compartments Are Regulated Differentially 1098

The Intravascular Compartment Is Monitored by
Parallel Endocrine and Neural Sensors 1098

The Intracellular Compartment Is Monitored by
Osmoreceptors 1100

Motivational Systems Anticipate the Appearance and
Disappearance of Error Signals 1100

Energy Stores Are Precisely Regulated 1100

Leptin and Insulin Contribute to Long-Term
Energy Balance 1100

Long-term and Short-term Signals Interact to
Control Feeding 1101

Motivational States Influence
Goal-Directed Behavior 1101

Both Internal and External Stimuli Contribute to
Motivational States 1103

Motivational States Serve Both Regulatory and
Nonregulatory Needs 1103

Brain Reward Circuity May Provide a Common Logic
for Goal Selection 1103

Drug Abuse and Addiction Are Goal-Directed
Behaviors 1104

Addictive Drugs Recruit the Brain’s Reward
Circuity 1105

Addictive Drugs Alter the Long-Term Functioning of
the Nervous System 1109

Dopamine May Act As a Learning Signal 1110

An Overall View 1113

Selected Readings 1113

References 1113

50 Seizures and Epilepsy 1116
Gary L. Westbrook

Classification of Seizures and the Epilepsies Is Important
for Pathogenesis and Treatment 1117

Seizures Are Temporary Disruptions of
Brain Function 1117

Epilepsy Is the Chronic Condition of
Recurrent Seizures 1118

The Electroencephalogram Represents the Collective
Behavior of Cortical Neurons 1119

Focal Seizures Originate Within a Small Group of
Neurons Known as a Seizure Focus 1119

Neurons in a Seizure Focus Have
Characteristic Activity 1121

The Breakdown of Surround Inhibition
Leads to Synchronization 1121
The Spread of Focal Seizures Involves Normal Cortical Circuitry 1124

Primary Generalized Seizures Are Driven by Thalamocortical Circuits 1128
Locating the Seizure Focus Is Critical to the Surgical Treatment of Epilepsy 1131
Prolonged Seizures Can Cause Brain Damage 1134
 Repeated Convulsive Seizures Are a Medical Emergency 1134
 Excitotoxicity Underlies Seizure-Related Brain Damage 1134
The Factors Leading to Development of Epilepsy Are an Unfolding Mystery 1135
 Among the Genetic Causes of Epilepsy Are Ion Channel Mutations 1135
 Epilepsies Involving Focal Seizures May Be a Maladaptive Response to Injury 1137
An Overall View 1138
Selected Readings 1138
References 1138

51 Sleep and Dreaming 1140
David A. McCormick, Gary L. Westbrook

Sleep Consists of Alternating REM and Non-REM Periods 1141
 Non-REM Sleep Has Four Stages 1141
 REM and Non-REM Dreams Are Different 1141
Sleep Obeys Circadian and Ultradian Rhythms 1144
 The Circadian Rhythm Clock Is Based on a Cyclic Production of Nuclear Transcription Factors 1146
 The Ultradian Rhythm of Sleep Is Controlled by the Brain Stem 1147
 Sleep-Related Activity in the EEG Is Generated Through Local and Long-Range Circuits 1148
Sleep Changes with Age 1150
The Characteristics of Sleep Vary Greatly Between Species 1150
Sleep Disorders Have Behavioral, Psychological, and Neurological Causes 1151
 Insomnia Is the Most Common Form of Sleep Disruption 1151
 Excessive Daytime Sleepiness Is Indicative of Disrupted Sleep 1152
 The Disruption of Breathing During Sleep Apnea Results in Fragmentation of Sleep 1152
 Narcolepsy Is Characterized by Abnormal Activation of Sleep Mechanisms 1152
 Restless Leg Syndrome and Periodic Leg Movements Disrupt Sleep 1155
 Parasomnias Include Sleep Walking, Sleep Talking, and Night Terrors 1155
 Circadian Rhythm Sleep Disorders Are Characterized by an Activity Cycle That Is Out of Phase with the World 1156
An Overall View 1156
Selected Readings 1157
References 1157

Part VIII
Development and the Emergence of Behavior

52 Patterning the Nervous System 1165
Thomas M. Jessell, Joshua R. Sanes
The Neural Tube Becomes Regionalized Early in Embryogenesis 1166
Secreted Signals Promote Neural Cell Fate 1167
 Development of the Neural Plate Is Induced by Signals from the Organizer Region 1168
 Neural Induction Is Mediated by Peptide Growth Factors and Their Inhibitors 1169
Rostrocaudal Patterning of the Neural Tube Involves Signaling Gradients and Secondary Organizing Centers 1169
 Signals from the Mesoderm and Endoderm Define the Rostrocaudal Pattern of the Neural Plate 1170
 Signals from Organizing Centers within the Neural Tube Pattern the Forebrain, Midbrain, and Hindbrain 1171
Dorsolateral Patterning of the Neural Tube Involves Similar Mechanisms at Different Rostrocaudal Levels 1172
 The Ventral Neural Tube Is Patterned by Sonic Hedgehog Protein Secreted from the Notochord and Floor Plate 1173
 The Dorsal Neural Tube Is Patterned by Bone Morphogenetic Proteins 1176
 Dorsolateral Patterning Mechanisms Are Conserved Along the Rostrocaudal Extent of the Neural Tube 1176
Local Signals Determine Functional Subclasses of Neurons 1176
Rostrocaudal Position Is a Major Determinant of Motor Neuron Subtype 1176
Local Signals and Transcriptional Circuits Further Diversify Motor Neuron Subtypes 1179

The Developing Forebrain Is Patterned by Intrinsic and Extrinsic Influences 1182
Inductive Signals and Transcription Factor Gradients Establish Regional Differentiation 1182
Afferent Inputs Also Contribute to Regionalization 1182

An Overall View 1185
Selected Readings 1185
References 1185

53 **Differentiation and Survival of Nerve Cells** 1187
Thomas M. Jessell, Joshua R. Sanes

The Proliferation of Neural Progenitor Cells Involves Symmetric and Asymmetric Modes of Cell Division 1187
Radial Glial Cells Serve As Neural Progenitors and Structural Scaffolds 1188
The Generation of Neurons or Glial Cells Is Regulated by Delta-Notch Signaling and Basic Helix-Loop-Helix Transcription Factors 1188
Neuronal Migration Establishes the Layered Organization of the Cerebral Cortex 1192
Central Neurons Migrate Along Glial Cells and Axons to Reach Their Final Settling Position 1194
Glia serve As a Scaffold in Radial Migration 1194
Axon Tracts Serve As a Scaffold for Tangential Migration 1194
Neural Crest Cell Migration in the Peripheral Nervous System Does Not Rely on Scaffolding 1197

The Neurotransmitter Phenotype of a Neuron Is Plastic 1199
The Transmitter Phenotype of a Peripheral Neuron Is Influenced by Signals from the Neuronal Target 1199
The Transmitter Phenotype of a Central Neuron Is Controlled by Transcription Factors 1199
The Survival of a Neuron Is Regulated by Neurotrophic Signals from the Neuronal Target 1200
The Neurotrophic Factor Hypothesis Was Confirmed by the Discovery of Nerve Growth Factor 1201
Neurotrophins Are the Best Studied Neurotrophic Factors 1202

Neurotrophic Factors Suppress a Latent Death Program in Cells 1205

An Overall View 1206
Selected Readings 1208
References 1208

54 **The Growth and Guidance of Axons** 1209
Joshua R. Sanes, Thomas M. Jessell

Differences in the Molecular Properties of Axons and Dendrites Emerge Early in Development 1209
Neuronal Polarity Is Established Through Rearrangements of the Cytoskeleton 1210
Dendrites Are Patterned by Intrinsic and Extrinsic Factors 1210

The Growth Cone Is a Sensory Transducer and a Motor Structure 1213
Molecular Cues Guide Axons to Their Targets 1218
The Growth of Retinal Ganglion Axons Is Oriented in a Series of Discrete Steps 1221
Growth Cones Diverge at the Optic Chiasm 1221
Ephrins Provide Gradients of Inhibitory Signals in the Brain 1224

Axons from Some Spinal Neurons Cross the Midline 1227
Netrins Direct Developing Commisural Axons Across the Midline 1227
Chemorepellent Factors Pattern the Midline 1229

An Overall View 1229
Selected Readings 1230
References 1231

55 **Formation and Elimination of Synapses** 1233
Joshua R. Sanes, Thomas M. Jessell

Recognition of Synaptic Targets Is Specific 1234
Recognition Molecules Promote Selective Synapse Formation 1234
Different Synaptic Inputs Are Directed to Discrete Domains of the Postsynaptic Cell 1236
Neural Activity Sharpens Synaptic Specificity 1237

Principles of Synaptic Differentiation Are Revealed at the Neuromuscular Junction 1239
Segregation of Retinal Inputs in the Lateral Geniculate Nucleus Is Driven by Spontaneous Neural Activity In Utero 1273
Activity-Dependent Refinement of Connections Is a General Feature of Circuits in the Central Nervous System 1274
 Many Aspects of Visual System Development Are Activity-Dependent 1274
 Auditory Maps Are Refined During a Critical Period 1275
 Distinct Regions of the Brain Have Different Critical Periods of Development 1277
Critical Periods Can Be Reopened in Adulthood 1278
An Overall View 1281
Selected Readings 1282
References 1282

57 Repairing the Damaged Brain 1284
Joshua R. Sanes, Thomas M. Jessell
Damage to Axons Affects Neurons and Neighboring Cells 1285
 Axon Degeneration Is an Active Process 1285
 Axotomy Leads to Reactive Responses in Nearby Cells 1287
Central Axons Regenerate Poorly After Injury 1287
Therapeutic Interventions May Promote Regeneration of Injured Central Neurons 1289
 Environmental Factors Support the Regeneration of Injured Axons 1290
 Components of Myelin Inhibit Neurite Outgrowth 1292
 Injury-Induced Scarring Hinders Axonal Regeneration 1292
 An Intrinsic Growth Program Promotes Regeneration 1294
 Formation of New Connections by Intact Axons Can Lead to Functional Recovery 1295
Neurons in the Injured Brain Die but New Ones Can Be Born 1296
Therapeutic Interventions May Retain or Replace Injured Central Neurons 1299
 Transplantation of Neurons or Their Progenitors Can Replace Lost Neurons 1299
 Stimulation of Neurogenesis in Regions of Injury May Contribute to Restoring Function 1299

Dif ferentiation of Motor Nerve Terminals Is Organized by Muscle Fibers 1242
Dif ferentiation of the Postsynaptic Muscle Membrane Is Organized by the Motor Nerve 1243
The Nerve Regulates Transcription of Acetylcholine Receptor Genes 1247
The Neuromuscular Junction Matures in a Series of Steps 1247
Central Synapses Develop in Ways Similar to Neuromuscular Junctions 1249
 Neurotransmitter Receptors Become Localized at Central Synapses 1250
 Synaptic Organizing Molecules Pattern Central Nerve Terminals 1252
 Glial Cells Promote Synapse Formation 1253
Some Synapses Are Eliminated After Birth 1254
An Overall View 1257
Selected Readings 1257
References 1257

56 Experience and the Refinement of Synaptic Connections . 1259
Joshua R. Sanes, Thomas M. Jessell
Development of Human Mental Function Is Influenced by Early Experience 1260
 Early Experience Has Lifelong Effects on Social Behaviors 1260
 Development of Visual Perception Requires Visual Experience 1261
Development of Binocular Circuits in the Visual Cortex Depends on Postnatal Activity 1261
 Visual Experience Affects the Structure and Function of the Visual Cortex 1262
 Patterns of Electrical Activity Organize Binocular Circuits in the Visual Cortex 1264
Reorganization of Visual Circuits During a Critical Period Involves Alterations in Synaptic Connections 1267
 Reorganization Depends on a Change in the Balance of Excitatory and Inhibitory Inputs 1268
 Postsynaptic Structures Are Rearranged During the Critical Period 1269
 Thalamic Inputs Are Also Remodeled 1270
 Synaptic Stabilization Contributes to Closing the Critical Period 1272

Kandel_FM.indd 34
8/11/12 2:44 PM
Alzheimer Disease Is the Most Common Senile Dementia 1334

The Brain in Alzheimer Disease Is Altered by Atrophy, Amyloid Plaques, and Neurofibrillary Tangles 1335

- Amyloid Plaques Contain Toxic Peptides That Contribute to Alzheimer Pathology 1336
- Neurofibrillary Tangles Contain Microtubule-Associated Proteins 1340
- Risk Factors for Alzheimer Disease Have Been Identified 1341

Alzheimer Disease Can Be Diagnosed Well but Available Treatments Are Poor 1341

Overall View 1343

Selected Readings 1345

References 1345

Part IX Language, Thought, Affect, and Learning 60

60 Language 1353

- Patricia K. Kuhl, Antonio R. Damasio
- Language Has Many Functional Levels: Phonemes, Morphemes, Words, and Sentences 1354
- Language Acquisition in Children Follows a Universal Pattern 1355
- The “Universalist” Infant Becomes Linguistically Specialized by Age 1 Year 1356
- Language Uses the Visual System 1357
- Prosodic Cues Assist Learning of Words and Sentences 1358
- Infants Use Transitional Probabilities to Identify Words in Continuous Speech 1359
- There Is a Critical Period for Language Learning 1359
- “Motherese” Enhances Language Learning 1360

Several Cortical Regions Are Involved in Language Processing 1360

- Language Circuits in the Brain Were First Identified in Studies of Aphasia 1360
- The Left Hemisphere Is Specialized for Phonetic, Word, and Sentence Processing 1360
- Prosody Engages Both Right and Left Hemispheres Depending on the Information Conveyed 1361
- Language Processing in Bilinguals Depends on Age of Acquisition and Language Use 1361
The Symptoms of Schizophrenia Can Be Grouped into Positive, Negative, and Cognitive 1390
Schizophrenia Is Characterized by Psychotic Episodes 1390
Both Genetic and Nongenetic Risk Factors Contribute to Schizophrenia 1391
Neuroanatomic Abnormalities May Be a Causative Factor in Schizophrenia 1393
Loss of Gray Matter in the Cerebral Cortex Appears to Result from Loss of Synaptic Contacts Rather Than Loss of Cells 1393
Abnormalities in Brain Development During Adolescence May Contribute to Schizophrenia 1395
Antipsychotic Drugs Act on Dopaminergic Systems in the Brain 1397
An Overall View 1399
Selected Readings 1399
References 1400

63 Disorders of Mood and Anxiety 1402
Steven E. Hyman, Jonathan D. Cohen

The Most Common Disorders of Mood Are Unipolar Depression and Bipolar Disorder 1403
Unipolar Depression Often Begins Early in Life 1403
Bipolar Disorder Includes Episodes of Mania 1405
Mood Disorders Are Common and Disabling 1405
Both Genetic and Nongenetic Risk Factors Play an Important Role in Mood Disorders 1405
Specific Brain Regions and Circuits Are Involved in Mood Disorders 1406
Depression and Stress Are Interrelated 1407
Major Depression Can Be Treated Effectively 1410
Antidepressant Drugs Target Monoaminergic Neural Systems 1410
Psychotherapy Is Effective in the Treatment of Major Depression 1416
Electroconvulsive Therapy Is Highly Effective Against Depression 1416
Bipolar Disorder Can Be Treated with Lithium and Several Drugs Initially Developed as Anticonvulsants 1416
Anxiety Disorders Stem from Abnormal Regulation of Fear 1418
Anxiety Disorders Have a Genetic Component 1420
Animal Models of Fear May Shed Light on Human Anxiety Disorders 1420
Appendices

A Review of Basic Circuit Theory. 1525
Steven A. Siegelbaum, John Koester

Basic Electrical Parameters 1525
Potential Difference (V or E) 1525
Current (I) 1525
Conductance (g) 1526
Capacitance (C) 1526

Rules for Circuit Analysis 1527
Conductance 1528
Current 1528
Capacitance 1529
Potential Difference 1529

Current in Circuits with Capacitance 1530
Circuit with Capacitor 1530
Circuit with Resistor and Capacitor in Series 1530
Circuit with Resistor and Capacitor in Parallel 1530

B The Neurological Examination of the Patient................................. 1533
Arnold R. Kriegstein, John C.M. Brust

Mental Status 1533
Alertness and Attentiveness 1533
Behavior, Mood, and Thought 1533
Orientation and Memory 1534
Cognitive Abilities 1534
Language Disorders 1534

Cranial Nerve Function 1536
Olfactory Nerve (Cranial N. I) 1536
E Neural Networks 1581
Sebastian Seung, Rafael Yuste

Early Neural Network Modeling 1582

Neurons Are Computational Devices 1583
 A Neuron Can Compute Conjunctions
 and Disjunctions 1583
 A Network of Neurons Can ComputeAny Boolean
 Logical Function 1585

Perceptrons Model Sequential and Parallel Computation
in the Visual System 1585
 Simple and Complex Cells Could Compute
 Conjunctions and Disjunctions 1586
 The Primary Visual Cortex Has Been Modeled As a
 Multilayer Perceptron 1588
 Selectivity and Invariance Must Be Explained by Any
 Model of Vision 1588
 Visual Object Recognition Could Be Accomplished by
 Iteration of Conjunctions and Disjunctions 1589

Associative Memory Networks Use Hebbian Plasticity to
Store and Recall Neural Activity Patterns 1592
 Hebbian Plasticity May Store Activity Patterns by
 Creating Cell Assemblies 1592
 Cell Assemblies Can Complete Activity Patterns 1594
 Cell Assemblies Can Maintain Persistent
 Activity Patterns 1595
 Interference Between Memories Limits Capacity 1596
 Synaptic Loops Can Lead to Multiple Stable
 States 1596
 Symmetric Networks Minimize Energy-Like
 Functions 1597
 Hebbian Plasticity May Create Sequential
 Synaptic Pathways 1598

An Overall View 1599

Selected Readings 1599

References 1599

F Theoretical Approaches to Neuroscience:
Examples from Single Neurons to
Networks 1601
Laurence F. Abbott, Stefano Fusi, Kenneth D. Miller

Single-Neuron Models Allow Study of the
Integration of Synaptic Inputs and Intrinsic
Conductances 1602
 Neurons Show Sharp Threshold Sensitivity to the
 Number and Synchrony of Synaptic Inputs in Quiet
 Conditions Resembling In Vivo 1602
 Neurons Show Graded Sensitivity to the Number and
 Synchrony of Synaptic Inputs in Noisy Conditions
 Resembling In Vitro 1604
 Neuronal Messages Depend on Intrinsic Activity and
 Extrinsic Signals 1605

Network Models Provide Insight into the Collective
Dynamics of Neurons 1605
 Balanced Networks of Active Neurons Can Generate the
 Ongoing Noisy Activity Seen In Vivo 1605
 Feed-forward and Recurrent Networks Can Amplify or
 Integrate Inputs with Distinct Dynamics 1608
 Balanced Recurrent Networks Can Behave Like
 Feed-forward Networks 1609
 Paradoxical Effects in Balanced Recurrent
 Networks May Underlie Surround Suppression
 in the Visual Cortex 1611
 Recurrent Networks Can Model Decision-making 1612

Selected Reading 1616

References 1617

Index 1619